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Abstract. Currently, molecular analysis has become one of the major
tools used for viral outbreak investigation and transmission network in-
ference. We present novel algorithms for accurate identification of trans-
mission clusters, detection of sources of infection and inference of trans-
mission history for highly heterogeneous viruses such as HIV and HCV.
Our framework VITRAQ (Viral Transmission inference from the analysis
of Quasispecies) for the first time incorporates into analysis the structure
of intra-host viral populations, which allows not only for the identifica-
tion of genetic relatedness among viral samples but also for the accurate
inference of transmission history from molecular data alone. Evaluation
conducted using experimental data obtained from HCV outbreaks shows
that the proposed algorithms outperform the state-of-the-art consensus-
based methods both in true and false positive rates for detection of trans-
mission clusters as well as in accuracy of source identification, and allow
for the accurate inference of transmission history (”who infected whom”)
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1 Introduction

Replication of RNA viruses is error prone – their genomes mutate at extremely
high rates [7]. Since mutations are generally well tolerated, many RNA viruses
such as Human Immunodeficiency Virus (HIV) and Hepatitis C virus (HCV)
exist in infected hosts as populations of closely related variants, known to virol-
ogists as quasispecies [5, 6].

The study of viral quasispecies has been revolutionized by the advent of se-
quencing technologies that allow for sampling viral quasispecies at great depth
[8]. DNA sequencing has already been used for inference of transmission networks
and for outbreak investigations for Influenza A [11], HIV [15], Hepatitis A virus



[4], Hepatitis B virus [13] and HCV [9]. However, contribution of sequencing
technologies to molecular surveillance of viral infections has mainly been hin-
dered by the lack of reliable computational methods for inferring transmission
networks directly from sequence data.

In this paper, we address the problem of designing an accurate and scal-
able algorithms for the prediction of viral transmissions and outbreaks, which
allows for fast, reliable and automatic identification and analysis of transmission
networks in public health laboratories during outbreak investigations. The state-
of-the-art software tools for automated transmission network analysis are mainly
based on using consensus sequences – only one sequence per patient represents
the whole intra-host viral population [15]. Primarily, the consensus-based cutoff
(CBC) algorithm is used to predict direct transmissions [15]; i.e., two individ-
uals are considered linked by transmission if the genetic distance between the
corresponding consensus viral sequences does not exceed a certain cutoff value.

Although such methods are extremely useful and produce important results,
they have major limitations. In particular, it is known that minority viral vari-
ants are frequently responsible for transmission of HCV infections [1], and such
transmissions may not be effectively detected using consensuses sequences. More-
over, analysis of consensus sequences and genetic-distance cutoff-based methods
does not allow for detecting the direction of transmissions, which is crucial for
the identification of outbreak sources and superspreaders.

We present novel methods for identification of transmission networks, trans-
mission clusters and sources of outbreaks, which resolve the aforementioned lim-
itations. The proposed algorithms allow for prediction of viral transmission and
its direction, identification of transmission clusters and sources of outbreaks, and
inference of transmission history.

Evaluation of the proposed algorithms using experimental data from HCV
outbreaks showed their superior performance over the consensus-based approach
in detecting transmission clusters and outbreak sources.

2 Methods

2.1 Inferring transmission and its direction

Due to continuous viral evolution, the intra-host viral populations at the moment
of transmission may differ significantly from the sampled viral populations, with
the intermediate parts of the sequence space not being sampled at all. To approx-
imate unsampled parts of sequence space between two viral populations, we use
Median Joining network [2] implemented in SplitsTree [10]. Let P1, P2 ∈ P be
two viral populations, and Gmjn = (Vmjn, Emjn, lmjn) be a median-joining net-
work with edge lengths pmjn. We consider only single-point mutations; therefore
every edge e of length lmjn(e) > 1 is subdivided by lmjn(e)−1 vertices. Without
loss of generality, we assume that Vmjn = {v1, ..., vn}, P1 = {v1, ..., vn1

}, P2 =
{vn1+1, ..., vn1+n2

}. Let L be the length of the genomic region under considera-
tion and ε be the mutation rate. Viral evolution is modeled using the following
quasispecies logistic growth system of equations:



dxi
dt

= (1−
n∑

j=1

xj/M)(rxi + q
∑

ji∈Emjn

xj), i = 1, ..., n (1)

with initial conditions xi(0) = x0 for i = 1, ..., n1 and xi(0) = 0 for i = n1 +
1, ..., n. Here r = (1 − ε)L is the probability of mutation-free viral replication,
q = (ε/3)(1− ε)L−1 is the probability of a single mutation between two adjacent
vertices in Gmjn and M is the maximal viral population size.

The time-distance between populations P1 and P2 is defined as follows:

T (P1, P2) = min{t : xn1+i(t) ≥ x0, i = 1, . . . , n2} (2)

Two viral populations are genetically related, if T (P1, P2) ≤ T ∗. Further, if
T (P1, P2) ≤ T (P2, P1), then the most probable direction of transmission if from
P1 to P2. Thus, pairs of related samples form a genetic relatedness digraph Gr.

2.2 Bayesian reconstruction of transmission history using Markov
Chain Monte Carlo sampling

We consider a tree of samples, where leafs represent sampled individuals and
interior nodes represent transmission events. The objective is to find a transmis-
sion tree T that maximizes the probability p(T |Gr) of observing the tree T , given
the genetic relatedness digraph Gr estimated at the previous step. We estimated
this probability in a Bayesian fashion as follows:

p(T |Gr) =
p(Gr|T )p(T )

p(Gr)
, (3)

where p(Gr|T ) is likelihood of the genetic relatedness digraph Gr given the
tree, and p(T ) is likelihood of the transmission tree T , assuming that all trans-
mission trees follow a prior distribution.

We estimate p(Gr|T ) by fitting the edge lengths of Gr into a tree T under the
assumption that all intra-host populations are sampled at the same time. This
problem can be formulated as the constrained linear least-square problem.

To infer the probability of a given tree p(T ), we first calculate labels of
internal nodes of T using the following rule: if v is an internal node of T and
i, j are its children with the known labels li and lj such that ij ∈ A(Gr), then
v receives the label lv = li. Using this rule, labels of all internal nodes of T are
calculated recursively starting from leafs, which labels are known.

Further, it is known that RNA viruses transmission networks are social net-
works. Consequently there are many statistical similarities between transmis-
sion networks and social networks such as scale-free degree distribution, small
diameter and presence of hubs (superspreaders) [15]. Therefore we assume, that
transmission trees are distributed in such a way that trees, which give rise to
scale-free transmission networks have higher probabilities to be observed. To
measure scalefreeness of the transmission network Gt we use a metric proposed
in [12]:



s(Gt) =
1

C2

∑
ij∈A(Gt)

didj , (4)

where di is a (undirected) degree of a vertex i in Gt and C2 is a normalization
constant. The value s(Gt) is used as a likelihood estimation for T

Using (3), we implemented Markov Chain Monte Carlo sampler from the
transmission tree distribution with tree neighborhoods obtained using nearest

neighbor interchange operation and an acceptance ratio α = min{1, p(T
′|Gr)

p(T |Gr) }

3 Results

For algorithms testing and comparison, we used a collection of HCV data con-
taining 142 HCV samples from 33 epidemiologically curated outbreaks reported
to Centers for Disease Control and Prevention in 2008-2013 and 193 HCV sam-
ples from infected individuals without any known epidemiological relationship
[3]. We compared the quality of transmission clusters identification for the pro-
posed algorithm and the consensus-based cutoff (CBC) algorithm with cutoffs
4.5% and 6.5%. Performance of algorithms was evaluated using the true positive
clustering rate (TPR) and the false positive clustering rate (FPR) [14]. As Table
1 indicates, VITRAQ clearly outperforms standard consensus-based methods.

Table 1. Combined results for related samples (33 clusters) and unrelated samples
(193 samples)

Methods Related samples Unrelated samples

# predicted
clusters

TPR FPR
# predicted

clusters
TPR FPR

VITRAQ 37 96.03% 0% 193 100% 0%
CBC[4.5%] 43 81.84% 0% 193 100% 0%
CBC[6.5%] 38 96.66% 0% 171 100% 1.37%

The quality of VITRAQ transmission history inference was evaluated using
the known history for 9 outbreaks revealed by epidemiological and forensic in-
vestigations. VITRAQ correctly identified sources of all 9 outbreaks and was
able to correctly infer 79.6% of transmission events.
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