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Abstract. Breast cancer is a complex disease that has been characterized into ten
different molecular subtypes. Current computational methods for determining the
subtypes are based on identifying gene biomarkers; i.e. differentially expressed
genes that best separate the subtypes. Such methods do not take into account
the functional relationships between genes, and hence, may not yield informative
biomarkers. We propose a machine learning framework for identifying network
biomarkers of breast cancer subtypes; i.e. subnetworks of functionally related
to gene biomarkers that best distinguish the subtypes. Our framework incorpo-
rates genomics, transcriptomics and interactomics information in identifying dis-
criminative network biomarkers corresponding to each subtype. We applied our
method on the METABRIC data and obtained a collection of highly predictive
network biomarkers with AUC performances ranging from 89.6% to 99.1%.
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tion network; copy number aberration/variation; network biomarker.

1 Introduction

Breast cancer (BC) is one of the leading causes of cancer related deaths among women
worldwide [4]. It has been categorized into different subtypes that can be distinguished
based on gene expression characteristics [3]. Correct diagnosis of a patient’s specific
BC subtype is vital in subsequently determining the best care for the patient. Most
bioinformatic methods have focused on identifying BC biomarkers as small subsets of
differentially expressed (DE) genes between subtypes. However, DE genes have limited
predictive performance due to (i) the tumor heterogeneity within tissues and across
patients and (ii) the independence between identified DE genes. New methods aim to
alleviate these limitations by integrating additional biological information with gene
expression information and identify network biomarkers (NBs); i.e. subnetworks of
functionally related to DE genes that best distinguish BC subtypes [7].

2 Materials and Methods

2.1 Data Set

We use the discovery data of METABRIC dataset [3] containing the copy number values
and gene expression levels of 997 primary breast tumors with long-term clinical follow-
up. Each sample contains expression information of 48,803 probe IDs, which have been
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mapped to 24,351 unique genes using median expression. The number of samples cor-
responding to each subtype are listed in Table 1. We combine human protein-protein
interaction (PPI) network data from BioGrid [9], HPRD [8], Intact [5] and MINT [2]
into a single large PPI network consisting of 230,000 protein-protein interactions and
15,823 proteins; which yield relationship information between genes.

Table 1. Number of samples in each of the ten subtypes.

Subtypes 1 2 3 4 5 6 7 8 9 10
# of Samples 76 45 156 167 94 44 109 143 67 96

2.2 Approach

We propose a new method for identifying the NB specific to each BC subtype as fol-
lows: for each BC subtype, (1) we use the GISTIC tool [1] to process the variation
(SNP, CNA, CNV) data and select the top n significant altered genes in the subtype;
(2) we use the chi-square ranking method to process the gene expression (GE) data and
select the top n differentially expressed genes in each subtype separately; (3) we take
the common genes in (1) and (2) above as the initial candidate seed genes for the sub-
type; 4) Finally, we map the seed genes onto a PPI network and find the subtype’s NB
in a greedy manner. To find NB of each subtype, we perform a one-against-all clas-
sification scheme with 10-fold cross-validation; taking the given subtype’s samples as
the positive class and the other subtypes’ samples as the negative class. Figure 1 shows
our approach for finding NB, separately, for each subtype. The details of our approach
follows below.

Fig. 1. A schematic view of the proposed framework.

Selecting the Seed Genes of a Subtype In both selection processes (steps 1 and
2 above) we overcome the class imbalance issue by using a cost-sensitive selection
method that calculates different false classification costs for each class depending on
their size. The seed set is the intersection the two selected gene sets for the subtype.
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Finding the NB of a Subtype We map all seed genes of the subtype onto single large
PPI network, to seed the search for a best separating NB. Starting from each seed node
v, the search for a NB proceeds as follows. We iteratively aggregate its neighboring
nodes u in a greedy manner. A random neighbor u is inserted into the current aggregate
S if the correlation between the genes in S∪{u} and the given subtype increases; that is
when |corr(S+ = S ∪ {u}, subtype)− corr(S, subtype)| > ∆ (we set ∆ = 0.001 by
trial-and-error). This process is repeated on the new aggregate S+ and continues until
no neighbor can be added to increase the correlation. This results in a subnetwork, Sv ,
obtained from a seed v. The final subtype’s NB is the union of all subnetworks Sv .

3 Results

We use accuracy (A), F -measure (F ) and area under ROC curve (AUC) as predictive
performance measures of each NB. Table 2 shows the number of seed genes (SG), the
number of nodes (N ) and interactions (I) in each identified NB, and the phenotype
correlation values (PC). Since the classes are highly imbalanced, using a more robust
performance measure such as AUC provides an unbiased insights for the performance
of the NB of each subtype. In Table 2, the mean AUC over all subtypes is 95.48% and
90% of the NBs have an AUC of at least 90%. This shows that our method indeed yields
subtype NBs with high predictive performance.

Table 2. Sizes and predictive performances of the subtype NBs

Subtype SG N I PC A F AUC
1 42 257 215 -0.7794 94.48% 0.940 0.969
2 16 242 226 -0.7567 96.79% 0.962 0.991
3 32 321 289 0.6970 87.96% 0.873 0.896
4 96 361 265 -0.6651 89.26% 0.883 0.915
5 18 195 177 -0.8195 97.39% 0.974 0.993
6 69 388 319 -0.8046 98.29% 0.982 0.997
7 16 282 266 -0.7827 92.48% 0.911 0.916
8 27 290 263 0.7729 90.87% 0.900 0.931
9 59 309 250 -0.7206 95.59% 0.949 0.968
10 75 200 125 -0.8112 96.29% 0.963 0.972

We have further analyzed some of the NBs we found. Figure 2 shows the largest
component from the NB of Subtype-1 and its seed gene ARID5B (in blue). ARID5B
is a well known oncogene [6] implicated in transcription regulation and involved in
cell differentiation and proliferation. It has been suggested that it is involved in cancer-
related signaling pathways and highly mutated in tumors.

4 Conclusion

We have introduced a novel framework for identifying the specific network biomarkers
of ten breast cancer subtypes. We integrated a secondary protein interaction network
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Fig. 2. The largest connected component from the NB of Subtype-1.

data with the primary tumor data consisting of gene variation and expression informa-
tion to identify network biomarkers that best distinguish the subtypes. The identified
network biomarkers yield high AUC results, and hence, will allow breast cancer re-
searchers to gain additional insight into the molecular mechanisms driving each breast
cancer subtype.
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