You are hereSoftware / Pyrosequencing error correction algorithm

Pyrosequencing error correction algorithm


11/28/2012 The new version of KEC is available. The algorithm for error threshold finding based on fitting of Poisson distribution to k-counts distribution was added. Special thanks for helping to Bram Vrancken and Alex Artyomenko

02/27/2013 The new version of KEC is available. The user interface was updated and cross-paltform functionality was added. Special thanks to Alex Artyomenko

04/12/2013 The new version of KEC is available. An option allowing to use Muscle instead of Clustal for additional correction procedure was added. Special thanks to Alex Artyomenko

 

KEC is distributed under the GNU General Public License (http://www.gnu.org/copyleft/gpl.html)

 

Running instructions for KEC

• Download the java archive KEC.jar from KEC

• Download the implementation of the adaptive mean shift based clustering algorithm from http://coewww.rutgers.edu/riul/research/code/AMS/fams_pc.zip Create the folder with the name “fams” at the same folder, as ErrorCorrection.jar. Put the executable file “fams.exe” to the folder “fams”

• Download ClustalW2 from http://ftp.ebi.ac.uk/pub/software/clustalw2/   Create a folder with the name “ClustalW2”    at the same folder as ErrorCorrection.jar. Put the executable file with the name “clustalw2.exe” to the folder “ClustalW2”

              or

Download Muscle from http://www.drive5.com/muscle/ Create a folder with the name "Muscle" at the same folder as ErrorCorrection.jar. Put the executable file with the name “muscle.exe” to the folder “Muscle”

• Download the archive lib.rar from http://alan.cs.gsu.edu/~skumsp/lib.rar  and extract it at the same folder as ErrorCorrection.jar

 

 

KEC running parameters:

            java -jar ErrorCorrection.jar [-h] [-k k] [-i i] [-cl | -mus] [-l l] [-dg dg] [-dpp dpp] filename

            Here 

  • filename is the name of file containing reads to be corrected;
  • k is the size of k-mers. Default: k=25
  • i is the number of iterations of the algorithm. Default: i=3
  • -cl Enable using of CLustalW for multiple and pairwise sequence alignment for additional correction procedure. Default:  do not align
  • -mus Enable using of Muscle for multiple and pairwise sequence alignment for additional correction procedure. Default:  do not align
  • l is responsible for an error threshold finding. If l = 0, then the algorithm based on fitting of Poisson distribution to k-counts distribution is used. If l > 0, then the region of l consecutive zeros in the k-counts distribution is used to find the error threshold. Default: l =0
  • dg is the parameter for haplotypes postprocessing using multiple alignment (see parameter alpha, Algorithm 2, step 3)). Default: dg = 30
  • dpp is the parameter for postprocessing of haplotypes using pairwise alignment of neigbor leaves of neighbor joining tree (see parameter alpha, Algorithm 2, step 4). Default: dpp = 30
  • -h - help

 

Examples:

           java -jar ErrorCorrection.jar -k 25 -i 3 -cl -l 25 test.fas

           java -jar ErrorCorrection.jar test.fas

           java -jar ErrorCorrection.fas -mus -l 1 -dg 15 -dpp 15 test.fas

           java -jar ErrorCorrection.jar -h

 

The output contains several files. The most important are:

1) filename_corrected.fas_corrected.fas – corrected reads

2) filename_corrected.fas_haplotypes.fas - haplotypes found after the first stage of the algorithm (without allignment stage)

3) filename_corrected.fas_haplotypes.fas_postprocessed.fas_RevComp.fas_PostprocPair.fas_postprocessed.fas

_PostprocPair.fas - haplotypes found after the second stage of the algorithm using allignment    (available only with -a)

 

Data sets

Data sets used in the paper are available at

1) sequencing results (fasta files, sff files)

2)  haplotypes found by KEC

3)  HVR1 clones used to create data sets (original and reverse complemented sequences)

 

Running instructions for ET

 

 Will be here soon

 

References 

P. Skums, Z. Dimitrova, D. S. Campo, G. Vaughan, L. Rossi, J. C. Forbi, J. Yokosawa, A. Zelikovsky, Y. Khudyakov,  “Efficient error correction for next-generation sequencing of viral amplicons,” BMC Bioinformatics 13 (Suppl10): S6 2012publisher url