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Abstract. Recent advancements in high-throughput sequencing experiments 

created an unprecedented situation when the experimental data accumulation 

outpaces computational analysis. While the basic analysis of each individual da-

taset is being conducted in the corresponding original publications, the analysis 

of new datasets in relation to already published data for the same cell type pro-

vides a computational problem, especially if the data are represented in signifi-

cantly different formats. Here we develop a software suite called QCUMBER 

(Quality ClUster Maps BuildER), which allows quantitative analysis of diverse 

datasets based on the continuous genomic coverage concept (as opposed to peak 

calling algorithms which operate with discrete genomic regions). We are focus-

ing on the interplay of nucleosome positioning, sequence-specific chromatin 

protein binding and DNA methylation, and describe typical workflows of data 

processing and integrative analysis taking into account information from di-

verse datasets, and discuss potential limitations and problems of such analyses.  

 

1 Introduction 

The basic bioinformatics view of chromatin is a mixture of myriads of molecules 

(nucleic acids, proteins, small ions, etc), sometimes characterized by 3D positions in 

the cell nucleus, but in most cases just the 1D genomic coordinate determining the 

location of a given nucleoprotein complex along the DNA. The most common nucle-

oprotein structure, the nucleosome, consists of eight histone proteins and 145-147 

DNA base pairs (bp) wrapped around the histone octamer core. In the recent years 

high-throughput sequencing has become a standard way of analyzing the complexity 

of gene regulation in chromatin. It includes many experimental assays to map protein 

binding in chromatin, such as chromatin immunoprecipitation using an antibody spe-
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cific for a given protein followed by sequencing (ChIP-seq) and related technologies 

to determine nucleosome positioning throughout the whole genome. In the latter case, 

antibodies are either not used, or used against core histones (e.g. H3 ChIP-seq). The 

most frequently used method for determining nucleosome positions is MNase-seq 

(chromatin digestion by micrococcal nuclease followed by sequencing). A number of 

complementary methods for nucleosome mapping have been proposed using MNase 

alone or in combination with sonication DNase (DNase-seq), transposase (ATAC-

seq), CpG methyltransferase (NOME-seq), or directed chemical cleavage.  

 

All methods listed above are based on the idea that chromatin can be cut into small 

fragments (with fragments being characterized by association of the DNA with a spe-

cific protein, or any protein, depending on the method) and then mapped back using 

the reference genome. The frequency of chromatin fragments mapped along the ge-

nome reflects the abundance of a given feature (a specific protein, or nonspecific 

DNA accessibility). Thus, the output of all these methods is by definition a continu-

ous non-homogeneous distribution of protein binding along the DNA (“binding 

map”). Nevertheless, most existing analysis methods do not treat this as a continuous 

binding map, but rather as a discrete distribution of protein binding locations (“bind-

ing sites”). This is achieved with the help of peak calling methods. It is assumed that 

the majority of the signal is just a noise that can be disregarded, and only well-defined 

peaks reflect specific protein binding sites. The latter assumption is justified for map-

ping binding sites of transcription factors (TFs) and associating these with co-

localizing proteins or genomic features such as promoters and enhancers. A number 

of generic computational tools has been developed to perform peak calling, including 

MACS/MACS2, HOMER, SICER, PeakSeq and CisGenome to name just a few. Fur-

thermore, many specialized programs that perform peak calling to determine nucleo-

some positions exist, including TemplateFilter, NPC, nucleR, NOrMAL, 

PING/PING2, MLM, NucDe, NucleoFinder, ChIPseqR, NSeq, NucPosSimulator, 

NucHunter, iNPS and PuFFIN. However, in many cases the underlying biology is 

such that protein distribution along the DNA cannot be treated as discrete. This is the 

case of nonspecific protein binding, and is also applicable to the nucleosome distribu-

tion along the DNA. In this case, one operates with the continuous pro-

tein/nucleosome occupancy profile, defining regions of cell type/state specific differ-

ential occupancy (e.g. DANPOS/DANPOS2, DiNuP, NUCwave). In principle, the 

simplest approach to define regions of differential occupancy is to shift a window 

along the genome and count the number of reads at each window position. But what if 

we do neither peak calling, nor the differential occupancy region definition? Analyze 

the continuous genomic map exactly as it is produced by the sequencing is signifi-

cantly more difficult, in particular, in the downstream analysis integrating this contin-

uous binding map with discrete genomic features (promoters, enhancers, etc). Below 

we will consider two possible scenarios of integrative sequencing analysis: which we 

call “discrete” or “continuous” based on the discrete or continuous processing of 

chromatin binding maps. Our novel software package QCUMBER (Quality ClUster 

Maps BuildER) is mostly based on the continuous analysis and a mixture of these two 

methods. Unlike the discrete binding site analysis outlined above, the continuous 



occupancy analysis does not discard the regions of low read density (which is essen-

tial in nucleosome positioning analysis). Instead, this type of analysis makes use of 

the large statistics and attempts to look at some averaged quantities, which character-

ize chromatin in different cell conditions at different genomic features.  

2 Results and Discussion 

The first issue in the continuous analysis is the normalization of the ChIP-seq signal. 

The strength of the ChIP-seq or MNase-seq signal critically depends on the quality of 

antibody, chromatin digestion conditions, sequencing depth and variations of the ex-

perimental protocols. Therefore, cross-platform comparison of datasets obtained in 

different laboratories provides a major challenge. Several solutions have been pro-

posed in the literature, such as ChIPnorm, ChIP-Rx, NCIS, MACE and CisGenome. 

In QCUMBER, our normalization strategy depends on the biological situation. For 

example, when working with TF ChIP-seq, our normalization strategy is to do peak 

calling, determine common peaks, which are represented in all datasets, and normal-

ize the datasets in such a way that the common peaks on average retain the same 

heights. After the normalization has been performed, one can carry out downstream 

analyses of the continuous occupancy profiles. 

 

A very common type of analysis is the calculation of the coverage maps for many 

genomic regions aligned with respect to some common feature (e.g., the transcription 

start site, TSS, or the TF binding site), and then averaging them. Individual coverage 

maps can be combined in a heatmap, where each line represents a genomic region, 

and the ordering of the regions is performed according to some clustering algorithm 

such as GAGT or deepTools. Our software allows dissecting clusters of genomic 

regions which are characterized by a similar profile of ChIP-seq (MNase-seq, Ribo-

some-seq etc) density, then extracting the regions from these profiles and performing 

for them either the discrete analysis as above, or other types of continuous analysis. 

One example of such analysis could be to calculate differential TF binding at those 

genomic regions, and compare continuous profiles predicted by the theory with the 

experimental ChIP-seq data.  

 

One of the tasks that are not addressed by available software packages is the integra-

tion of ChIP-seq and DNA methylation data (beyond the discrete analysis mentioned 

above, which simply deals with genomic coordinates of differentially methylated 

regions). The difficulty is that the precision of the DNA methylation data is 1 bp (as 

obtained e.g. with the help of bisulfite sequencing), while the precision of ChIP-seq or 

MNase-seq is usually much worse. QCUMBER provides a possibility to deal with all 

individual methylated (or unmethylated CpGs). The reverse task is also possible: one 

can calculate the density of DNA methylation around any genomic feature [1]. DNA 

methylation positions obtained from standard methylation callers such as Bismark can 

be converted into intermediate files with the continuous DNA methylation coverage 

in analogy with ChIP-seq output, thus making these datasets directly comparable. 



Another integral parameter of chromatin, which changes upon cell treatment or during 

cell differentiation, is the Nucleosome Repeat Length (NRL). Our program allows 

calculating NRL based on ChIP-seq or MNase-seq data and comparing it between 

different cell conditions or between different types of genomic regions for the same 

cell type [2, 3]. These differences are usually quite small (from 1 up to 15 bp), and 

therefore a method needs to take into account the error of the NRL determination.  

 

One of the novel points addressed by QCUMBER is the comparison between large 

datasets, sometimes obtained in different laboratories for the same cell type. For ex-

ample, about 14 datasets exist where a single method, MNase-seq, was used to deter-

mine genome-wide nucleosome positioning in a single cell type, ESC, reported by 

about 10 different laboratories including ours [4]. Nucleosome positions derived from 

these datasets would overlap only partially. Thus, a discrete type of analysis of these 

data would mostly fail. Concerning the continuous analysis, the main question is how 

to deal with the fact that the occupancy profiles from these 14 datasets are very differ-

ent, yet they all reflect the same underlying biology? To address this question, we 

have developed a window-based algorithm, which, after the normalization of individ-

ual datasets, compares the relative number of reads per regions in each dataset. As a 

result, genomic regions can be sorted based on the similarities or differences of their 

representation in ChIP/MNase-seq in different datasets. Divergently represented re-

gions are called “fuzzy”, and are further analyzed using basic discrete analysis de-

scribed above, assuming that these regions undergo active chromatin redistributions 

(TF binding, nucleosome remodeling, etc).  

 

The software will be made available online upon final submission of the manuscript. 
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